Reaction of phenylhydrazines with arenes in the presence of aluminium trichloride

Atsushi Ohwada, Shigeru Nara, Takeshi Sakamoto and Yasuo Kikugawa*
Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan

Received (in Cambridge, UK) 26th April 2001, Accepted 27th September 2001
First published as an Advance Article on the web 29th October 2001

Phenylnitrenium ions are generated from phenylhydrazines by treatment with AlCl_{3}. Reaction of a phenylnitrenium ion with arenes results in both aromatic N -substitution and C -substitution. In contrast, an N-methylphenylnitrenium ion undergoes exclusively aromatic C-substitution. Reaction of a phenylnitrenium ion with arenes present only in slight excess produces anilinated products in moderate to good yields.

Introduction

The chemistry of nitrenium ions has received considerable attention with respect to synthetic, theoretical, and biological considerations. ${ }^{1}$ In spite of the several potential uses of arylnitrenium ions, methods for their generation are limited. ${ }^{2}$ Examples of reactions that involve phenylnitrenium ions as intermediates include the following. Parish and Whiting reported tetrafluoroboric acid-catalyzed phenylamination of arenes with phenylhydroxylamine. ${ }^{3}$ Takeuchi et al. have found that phenyl azide reacts with arenes in the presence of trifluoroacetic acid (TFA) ${ }^{4 a}$ or aluminium trichloride. ${ }^{4 b}$ Olah et al. have reported the acid-catalyzed reactions of phenyl azide with triffic acid (TFSA). ${ }^{5}$ Shudo and co-workers have reported that phenylhydrazine reacts with benzene in the presence of TFA and TFSA to give aminobiphenyls. ${ }^{6}$ Recently, an arylnitrenium ion has been generated by photolysis of 1 -anilino-pyridinium and -quinolinium salts. ${ }^{7}$

We have reported that the reaction of N -(arylamino)phthalimide derivatives with AlCl_{3} in benzene produces aminobiaryls and N, N-diarylamines. ${ }^{8}$ The formation of an arylnitrenium ion was suggested to account for the production of these products. In an extension of this work, we investigated the reaction of phenylhydrazine 1a with AlCl_{3} in the presence of arenes. Compound 1a has been shown previously to decompose upon heating in the presence of Lewis acids to give aniline, benzene, ammonia, and other products. ${ }^{9}$ In a molten mixture of $\mathrm{AlCl}_{3}-$ $\mathrm{NaCl}-\mathrm{KCl}$, 1a gives o-phenylenediamine (30%) and aniline (30\%). ${ }^{10}$

Results and discussion

Reaction of phenylhydrazines with solvent arenes in the presence of AlCl_{3}

Treatment of $\mathbf{1 a}$ with AlCl_{3} (5 mol eq.) in benzene for 1 h at room temperature gave diphenylamine $\mathbf{2 a}$ and 2 -amino- and 4 -amino-biphenyl (3, 4a) (Scheme 1). The formation of these products indicates that AlCl_{3}-mediated heterolytic cleavage of the $\mathrm{N}-\mathrm{N}$ bond produced a phenylnitrenium ion and that canonical forms involving the benzene ring were trapped by benzene to give the products. It is interesting to note that 1a, despite having no nucleofugal substituent on nitrogen, can be converted to a phenylnitrenium ion under mild reaction conditions.

Reaction of several benzene derivatives with 1a by this procedure gave the results presented in Table 1.

Generally, a phenylnitrenium ion has canonical resonance forms in which the positive charge populates the ortho- and para-positions as well as the nitrogen atom. Therefore, one can expect the formation of three kinds of products, ortho- and para-aminobiaryls and N, N-diarylamine. Takeuchi and Takano reported that a phenylnitrenium ion generated by the action of strong acid (TFA or TFSA) on phenyl azide preferentially undergoes N -substitution to give N, N-diarylamine. ${ }^{11}$ On the other hand, a phenylnitrenium ion generated by the action of strong acid on 1a undergoes both C - and N -substitution. ${ }^{6}$ Likewise, AlCl_{3}-mediated decomposition of $\mathbf{1 a}$ in solvent arenes brought about essentially the same results. In contrast, it is noteworthy that an N-methylphenylnitrenium ion formed by reaction of N-methyl- N-phenylhydrazine 1b with AlCl_{3} undergoes exclusively aromatic C-substitution to give biphenyl derivatives 6a-d, 7a-c (Table 1, entries 6-9).

Reaction of phenylhydrazines with 1-2 molar excess of arenes in the presence of AlCl_{3}

The hitherto reported reactions of phenylnitrenium ion with arenes are limited to the cases where large excesses of arenes are used as solvent. However, it would be useful to develop an equimolar coupling reaction of nitrenium ions with arenes, in particular in cases where the arene is difficult to prepare. In this context, we have investigated the ability of solvents to stabilize a nitrenium ion that would allow further coupling reactions.

Initially, we investigated the reaction of $\mathbf{1 a}$ with 1.1 molar equiv. of naphthalene in the presence of AlCl_{3} in nitromethane. The phenylnitrenium ion generated from 1a attacked the α-position of naphthalene to give N-(naphthalen-1-yl)aniline 2 f in 47% yield along with unidentified products (Scheme 2). $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{CHOH}$ (HFIP) is known to have a high ionizing power and low nucleophilicity, ${ }^{12}$ and might stabilize a nitrenium ion for an equimolar coupling reaction. Indeed, changing the solvent from $\mathrm{CH}_{3} \mathrm{NO}_{2}$ to $\mathrm{CH}_{3} \mathrm{NO}_{2}$ - $\mathrm{HFIP}(1: 1)$ raised the yield of $\mathbf{2 f}$ to 78%. Based on these results, HFIP alone or mixed with other solvents was used in our subsequent examination of coupling reactions with other arenes. The results are presented in Table 2.

Takeuchi et al. have reported that reaction of phenyl azide with TFA produces a phenylnitrenium ion that reacts with a large excess of naphthalene to afford $\mathbf{2 f}$ in 41% yield. If the nitrenium ion is generated with TFSA the yield is raised to $78 \%{ }^{4,11}$ In our case, the same N -substitution product 2 f was obtained in 78% yield using 1.1 molar excess of naphthalene. The yields are isolated yields based on 1a consumed.

 2a: $\mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{5} \quad$ 3: $\mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{5}$

$\begin{aligned} & \text { 4a: } \\ & \text { 4b: }=\mathrm{H}, \mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{5} \\ &=\mathrm{H}, \mathrm{Ar}=2-\mathrm{F}-\mathrm{C}_{6} \mathrm{H}_{4}\end{aligned}$
4c: $\mathrm{R}=\mathrm{H}, \mathrm{Ar}=2-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4}$
4d: $\mathrm{R}=\mathrm{H}, \mathrm{Ar}=2-\mathrm{Br}-\mathrm{C}_{6} \mathrm{H}_{4}$
5a: $R=H, A r=4-F-C_{6} H_{4}$
5b: $R=\mathrm{H}, \mathrm{Ar}=4-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4}$
5c: $\mathrm{R}=\mathrm{H}, \mathrm{Ar}=4-\mathrm{Br}-\mathrm{C}_{6} \mathrm{H}_{4}$

6a: $R=M e, A r=C_{6} H_{5}$ 6b: $R=M e, A r=2-F-C_{6} H_{4}$ 6c: $R=M e, A r=2-B r-\mathrm{C}_{6} \mathrm{H}_{4}$ 6d: $R=\mathrm{Me}, \mathrm{Ar}=2-\mathrm{Me}-\mathrm{C}_{6} \mathrm{H}_{4}$ 7a: $\mathrm{R}=\mathrm{Me}, \mathrm{Ar}=4-\mathrm{F}-\mathrm{C}_{6} \mathrm{H}_{4}$ 7b: $R=M e, A r=4-B r-C_{6} H_{4}$ 7c: $R=\mathrm{Me}, \mathrm{Ar}=4-\mathrm{Me}-\mathrm{C}_{6} \mathrm{H}_{4}$

Scheme 1
Table $1 \mathrm{AlCl}_{3}$-mediated decomposition of $\mathbf{1 a - d}$ in solvent arenes at room temperature

| Entry | Reagent | Solvent | Conditions | Product (yield, \%) |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | $\mathbf{1 a}$ | benzene | $\mathrm{rt}, 1 \mathrm{~h}$ | $\mathbf{2 a}(44), \mathbf{3}(8), \mathbf{4 a}(30)$ |
| 2 | $\mathbf{1 a}$ | fluorobenzene | $\mathrm{rt}, 2.5 \mathrm{~h}$ | $\mathbf{2 b}(30), \mathbf{4 b}(9), \mathbf{5 a}(14)$ |
| 3 | $\mathbf{1 a}$ | chlorobenzene | $\mathrm{rt}, 3 \mathrm{~h}$ | $\mathbf{2 c}(25), \mathbf{4 c}(15), \mathbf{5 b}(6)$ |
| 4 | $\mathbf{1 a}$ | bromobenzene | $\mathrm{rt}, 3 \mathrm{~h}$ | $\mathbf{2 d}(28), \mathbf{4 d}(15), \mathbf{5 c}(9)$ |
| 5 | $\mathbf{1 a}$ | p-xylene | $\mathrm{rt}, 1 \mathrm{~h}$ | $\mathbf{2 e}(59)$ |
| 6 | $\mathbf{1 b}$ | benzene | $\mathrm{rt}, 1 \mathrm{~h}$ | $\mathbf{6 a}(92)$ |
| 7 | $\mathbf{1 b}$ | fluorobenzene | $\mathrm{rt}, 1 \mathrm{~h}$ | $\mathbf{6 b}(32), \mathbf{7 a}(51)$ |
| 8 | $\mathbf{1 b}$ | bromobenzene | $\mathrm{rt}, 1 \mathrm{~h}$ | $\mathbf{6 c}(57), \mathbf{7 b}(19)$ |
| 9 | $\mathbf{1 b}$ | toluene | $\mathrm{rt}, 1 \mathrm{~h}$ | $\mathbf{6 d}(35), \mathbf{7 c}(29)$ |

Table 2 Reaction of $\mathbf{1 a}$ and $\mathbf{1 b}$ with arenes in solvents in the presence of AlCl_{3}

Entry	Reagent	Arene	Molar quotient Arene/Reagent	AlCl_{3} (equiv.)	Solvent	Temperature	Reaction time (t / h)	Product (yield, \%)
1	1a	naphthalene	1.1	5	$\mathrm{CH}_{3} \mathrm{NO}_{2}$	rt	17	2 f (47)
2	1a	naphthalene	1.1	10	$\mathrm{CH}_{3} \mathrm{NO}_{2}-\mathrm{HFIP}^{\text {a }}$ ($1: 1$)	rt	4	2 f (78)
3	1a	naphthalene	2.0	5	$\mathrm{CH}_{3} \mathrm{NO}_{2}$-HFIP (1:1)	rt	4	2 f (78)
4	1a	biphenyl	1.5	5	HFIP	reflux	1.5	$\begin{aligned} & \mathbf{2 g}(8), \\ & \mathbf{2 h}(57) \end{aligned}$
5	1a	fluorene	1.1	10	$\mathrm{CH}_{3} \mathrm{NO}_{2}$ - $\mathrm{HFIP}(1: 1)$	rt	48	2i (73)
6	1a	dibenzofuran	1.5	5	HFIP	reflux	0.33	2j (71)
7	1b	naphthalene	1.1	10	$\mathrm{CH}_{3} \mathrm{NO}_{2}$ - $\mathrm{HFIP}(1: 1)$	rt	4	6e (65)
8	1b	naphthalene	2.0	5	$\mathrm{CH}_{2} \mathrm{Cl}_{2}-\operatorname{HFIP}(1: 1)$	rt	2	6e (76)
9	1b	phenol	2.0	5	$\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{HFIP}(1: 1)$	rt	4.5	6f (39)
10	1b	N -(N -methylanilino)phthalimide	1.0	5	$\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{HFIP}(1: 1)$	rt	9	$\mathbf{6 g}$ (71)

${ }^{a}$ HFIP: 1,1,1,3,3,3-Hexafluoropropan-2-ol.
f: $\mathrm{Ar}=1$-naphthyl
2g: $A r=2$-biphenyl
2h: Ar = 4-biphenyl
2i: $\mathrm{Ar}=2$-fluorenyl
2j: $\mathrm{Ar}=3$-dibenzofuranyl
or

6e: $\mathrm{Ar}=1$-naphthyl 6f: $\mathrm{Ar}=4-\mathrm{HO}-\mathrm{C}_{6} \mathrm{H}_{4}$
$6 \mathrm{~g}: \mathrm{A}$
 Ar = 1 -naphthyl

Scheme 2
In contrast to these results, when we used $\mathbf{1 b}$ as a starting compound, C-substitution occurred exclusively to give $\mathbf{6 e}$ in 76% yield (Table 2, entry 8). The para position of an
N-methylphenylnitrenium ion seems to be extraordinarily reactive to nucleophiles. This kind of reaction consistently occurred not only with naphthalene, but also with other arenes examined (Table 1, entries 6-9; Table 2, entries 7-10). The exact reasons for this exclusive and regioselective C -substitution have not been established.

We have extended these studies to include reactions with other arenes. A slight molar excess of fluorene and dibenzofuran reacted with $\mathbf{1 a}$ in the presence of AlCl_{3} to afford $\mathbf{2 i}$ and $\mathbf{2 j}$ in 73% and 71% yield, respectively (Table 2, entry 5 and 6). The product $2 \mathbf{i}$ was identified as (9 H -fluoren- 2 -yl)aniline by comparison of the UV absorption $\left[\lambda_{\text {max }}(\mathrm{EtOH}) 320 \mathrm{~nm}\right]$ and melting point ($138-139^{\circ} \mathrm{C}$) with those of the reported values ${ }^{13}\left[\lambda_{\text {max }}\right.$ (EtOH) $\left.316 \mathrm{~nm}, \mathrm{mp} \mathrm{135-136}{ }^{\circ} \mathrm{C}\right]$. Data of the other positional isomers of $\mathbf{2} \mathbf{i}$ are listed in ref. 14. The product $\mathbf{2} \mathbf{j}$ was determined to be (dibenzofuran-3-yl)aniline by ${ }^{1} \mathrm{H}$ NMR spectroscopy and X-ray crystallography. The presence of a doublet resonance (δ $7.93, J=8.2 \mathrm{~Hz}$) of the proton on $\mathrm{C}-1$ in the ${ }^{1} \mathrm{H}$ NMR spectrum indicates that the anilino group should be substituted on C-3 or C-4. Unfortunately, the signals of $\mathrm{H}-3$ and $\mathrm{H}-4$ of $\mathbf{2 j}$ and the N -acetyl compound $\mathbf{8}$ were not separated. Ultimately, we subjected $\mathbf{8}$ to single-crystal X-ray crystallography. The X-ray diffraction data (Fig. 1) unambiguously showed the anilino group was substituted on C-3.

Electrophilic aromatic substitution reactions, such as halogenation, acylation and chloromethylation, all take place at C-2

Fig. 1 ORTEP drawing of the X-ray crystallographic structure of N -(dibenzofuran-3-yl)- N -phenylacetamide $\mathbf{8}$
of dibenzofuran due to the participation of the lone pair of the ring oxygen. ${ }^{15}$ Further substitution by these methods results in the production of the 2,8 -disubstituted compounds. ${ }^{15}$ It is noteworthy that, in every case studied, exclusively monoanilinated compounds were produced by the electrophilic phenylamination reaction. The anilino group that presumably is coordinated with AlCl_{3} appears to deactivate the aromatic ring sufficiently to prevent further anilination.

In summary, our studies show that a phenylnitrenium ion generated from phenylhydrazine in the presence of AlCl_{3} was trapped with solvent arenes to give both aromatic N -substitution and C -substitution products, while an N-methylphenylnitrenium ion generated from N-methyl- N-phenylhydrazine reacted with arenes to give exclusively aromatic C-substitution products. Equimolar reactions of a phenylnitrenium ion with a series of arenes produced anilinated arenes in moderate to good yields.

Experimental

Melting points were determined on a Yanagimoto micromelting point apparatus and are uncorrected. IR spectra were recorded on a JASCO IR 810 spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra were measured at 270 MHz on JEOL JNM-EX270 or at 500 MHz on JNM-A500 with TMS as internal reference. J-Values are in Hz . Mass spectra were measured with a JEOL JMS-700 spectrometer using a direct inlet system. Elemental analyses were performed in the Microanalytical Laboratory of this University. Compounds 1a, 1b, 2a, 3, 4a, biphenyl, fluorene and dibenzofuran were purchased from Tokyo Kasei Kogyo Co. The following compounds are known; $\mathbf{2 a},{ }^{16} \mathbf{2 b},{ }^{17} \mathbf{2 c},{ }^{18} \mathbf{2 d},{ }^{19} \mathbf{2 e},{ }^{20}$ $\mathbf{2 f},{ }^{21} \mathbf{2 g},{ }^{22} \mathbf{2 h},{ }^{23} \mathbf{2 i},{ }^{13} \mathbf{3},{ }^{24} \mathbf{4 a},{ }^{25} \mathbf{4 b},{ }^{26} \mathbf{5 a},{ }^{27} \mathbf{5} \mathbf{b},{ }^{28} \mathbf{5 c},{ }^{29} \mathbf{6} \mathbf{a},{ }^{8} \mathbf{6} \mathbf{g}^{8}$.

Reaction of phenylhydrazine 1 a in benzene in the presence of AlCl_{3}. Typical procedure for Table 1

To a solution of phenylhydrazine $\mathbf{1 a}(150 \mathrm{mg}, 1.39 \mathrm{mmol})$ in benzene (10 mL) was added $\mathrm{AlCl}_{3}(925 \mathrm{mg}, 6.94 \mathrm{mmol})$ at room temperature. After the solution had been stirred for 1 h , the reaction mixture was quenched with 5% aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}(40 \mathrm{~mL})$ with cooling. The aqueous layer was extracted with ethyl acetate $(2 \times 20 \mathrm{~mL})$ and the combined organic layers were washed with brine (25 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The crude product was chromatographed on a column of silica gel (benzene-ethyl acetate $30: 1$) to give 2a ($71 \mathrm{mg}, 44 \%$), $\mathbf{3}$ ($10 \mathrm{mg}, 8 \%$), and $\mathbf{4 a}$ ($53 \mathrm{mg}, 30 \%$) in order of elution. $\mathbf{2 a}$: $\mathrm{mp} 53-54{ }^{\circ} \mathrm{C}$ (lit., ${ }^{16} 54-55^{\circ} \mathrm{C}$). 3: mp $44-46^{\circ} \mathrm{C}$ (lit., ${ }^{24} 49-50^{\circ} \mathrm{C}$). 4a: mp $50-51^{\circ} \mathrm{C}$ (lit.,,$^{25} 50-51^{\circ} \mathrm{C}$). Spectral data of 2a, 3, and 4a were identical with those of commercially available samples.

Reaction of $\mathbf{1 a}$ in fluorobenzene. Compounds $2 \mathrm{~b}, \mathbf{4 b}$ and 5 a were obtained by reaction of $\mathbf{1 a}$ with AlCl_{3} in fluorobenzene according to the typical procedure for Table 1. Compound 2b: colourless crystals; mp 34-35 ${ }^{\circ} \mathrm{C}\left(\right.$ lit..,$\left.^{17} 34^{\circ} \mathrm{C}\right) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1}$ $3400,1600,1510,1320,1220 ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 5.56(1 \mathrm{H}, \mathrm{br}$ s, NH), 6.84-7.09 (7H, m, ArH), 7.25 ($2 \mathrm{H}, \mathrm{dd}, J 8.5,7.3, \mathrm{ArH}$); m / z (EI) 187 ($\mathrm{M}^{+}, 100 \%$), 186 (38). Compound 4b: pale yellow crystals; mp $36.5-37.5^{\circ} \mathrm{C}$ (lit., ${ }^{26} 36{ }^{\circ} \mathrm{C}$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3470$, $3380,1520,1485 ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 3.78\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right)$, 6.76 ($2 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{ArH}$), 6.97-7.30 ($3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.33-7.38 ($3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); m/z (EI) 187 ($\mathrm{M}^{+}, 100 \%$), 159 (7). Compound 5a: pale yellow crystals; mp $121-122{ }^{\circ} \mathrm{C}$ (lit., ${ }^{27} 120{ }^{\circ} \mathrm{C}$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3425,3300,1635,1615,1500 ; \delta_{\mathrm{H}}(270 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 3.72\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right), 6.75(2 \mathrm{H}, \mathrm{d}, J 8.4, \mathrm{ArH}), 7.07(2 \mathrm{H}$, $\mathrm{t}, J 8.7, \mathrm{ArH}), 7.35(2 \mathrm{H}, \mathrm{d}, J 8.4, \mathrm{ArH}), 7.47(2 \mathrm{H}, \mathrm{dd}, J 8.7,5.0$, ArH); m/z (EI) 187 ($\mathrm{M}^{+}, 100 \%$), 186 (15).

Reaction of $\mathbf{1 a}$ in chlorobenzene. Compounds $\mathbf{2 c}, \mathbf{4 c}$ and $\mathbf{5 b}$ were obtained by reaction of $\mathbf{1 a}$ with AlCl_{3} in chlorobenzene according to the typical procedure for Table 1. Compound $\mathbf{2 c}$: colourless crystals; mp $67-68{ }^{\circ} \mathrm{C}$ (lit., ${ }^{18} 66-68^{\circ} \mathrm{C}$); $v_{\max }(\mathrm{KBr}) /$ $\mathrm{cm}^{-1} 3400,1590,1500,1320 ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 5.64(1 \mathrm{H}, \mathrm{br}$ $\mathrm{s}, \mathrm{NH}), 6.95(1 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{ArH}), 6.99(2 \mathrm{H}, \mathrm{d}, J 9.0, \mathrm{ArH}), 7.04$ ($2 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{ArH}$), $7.21(2 \mathrm{H}, \mathrm{d}, J 9.0, \mathrm{ArH}), 7.24-7.31(2 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH}) ; m / z(\mathrm{EI}) 205\left(\mathrm{M}^{+}+2,33 \%\right), 203\left(\mathrm{M}^{+}, 100\right), 167(41)$. Compound 4c: a pale yellow oil (Found: M^{+}, 203.0521. $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{ClN}$ requires $M, 203.0502$); $v_{\max }($ film $) / \mathrm{cm}^{-1} 3460,3380$, 1520,$1470 ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 5.79\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right), 6.75$ $(2 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{ArH}), 7.16-7.34(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.44(1 \mathrm{H}, \mathrm{dd}$, $J 7.7,7.1, \mathrm{ArH}) ; m / z(\mathrm{EI}) 205\left(\mathrm{M}^{+}+2,33 \%\right), 203\left(\mathrm{M}^{+}, 100\right)$, 167 (21). Compound $\mathbf{5 b}$: pale yellow crystals; $\mathrm{mp} 132{ }^{\circ} \mathrm{C}$ (lit., ${ }^{28}$ $\left.132-133{ }^{\circ} \mathrm{C}\right) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3420,3320,1610,1485 ; \delta_{\mathrm{H}}(270$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 3.68\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right), 6.75(2 \mathrm{H}, \mathrm{d}, J 8.4, \mathrm{ArH})$, $7.34(2 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{ArH}), 7.38(2 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{ArH}), 7.45(2 \mathrm{H}$, d, J 8.8, ArH); $m / z(E I) 205\left(\mathrm{M}^{+}+2,32 \%\right), 203\left(\mathrm{M}^{+}, 100\right)$, 167 (18).

Reaction of 1 a in bromobenzene. Compound 2d, 4d and 5 c were obtained by reaction of $\mathbf{1 a}$ with AlCl_{3} in bromobenzene according to the typical procedure for Table 1. Compound 2d: colourless crystals; mp $86-87^{\circ} \mathrm{C}\left(\right.$ lit..,$\left.^{19} 88^{\circ} \mathrm{C}\right) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1}$ $3400,1585,1505,1485 ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 5.68(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{NH}), 6.88-7.02(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.94(2 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{ArH}), 7.05$ ($2 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{ArH}$), $7.22-7.32(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.34(2 \mathrm{H}, \mathrm{d}, J 8.8$, ArH); m / z (EI) $249\left(\mathrm{M}^{+}+2,96 \%\right), 247\left(\mathrm{M}^{+}, 100\right), 167$ (32). Compound 4d: a pale yellow oil (Found: M^{+}, 246.9998. $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{BrN}$ requires $M, 246.9997$); $v_{\max }($ film $) / \mathrm{cm}^{-1} 3460,3380$, $1625,1520,1470 ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 3.75\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right)$, $6.74(2 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{ArH}), 7.06-7.19(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.23(2 \mathrm{H}, \mathrm{d}$, $J 8.8, \mathrm{ArH}), 7.29-7.34(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.64(1 \mathrm{H}, \mathrm{d}, J 7.7, \mathrm{ArH})$; $m / z(\mathrm{EI}) 249\left(\mathrm{M}^{+}+2,98 \%\right), 247\left(\mathrm{M}^{+}, 100\right), 167$ (47). Compound 5 c: pale yellow crystals; mp $142{ }^{\circ} \mathrm{C}$ (lit.,,$^{29} 142-143{ }^{\circ} \mathrm{C}$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3420,3330,1610,1525,1485 ; \delta_{\mathrm{H}}(270 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 3.78\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right), 6.75(2 \mathrm{H}, \mathrm{d}, J 8.4, \mathrm{ArH}), 7.36(2 \mathrm{H}$, d, $J 5.1, \mathrm{ArH}), 7.41(2 \mathrm{H}, \mathrm{d}, J 5.1, \mathrm{ArH}), 7.51(2 \mathrm{H}, \mathrm{d}, J 8.8$, $\mathrm{ArH}) ; m / z(\mathrm{EI}) 249\left(\mathrm{M}^{+}+2,99 \%\right), 247\left(\mathrm{M}^{+}, 100\right), 167(47)$.

Reaction of 1a in \boldsymbol{p}-xylene. Compound 2 e was obtained by reaction of $\mathbf{1 a}$ with AlCl_{3} in p-xylene according to the typical procedure for Table 1. Compound $2 \mathrm{e}:{ }^{20}$ a pale yellow oil; $v_{\max }(f i l m) / \mathrm{cm}^{-1} 3390,3050,1600,1580,1520,1500 ; \delta_{\mathrm{H}}(270$ MHz DMSO- d_{6}) $2.14\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.20\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 6.70-$ $6.76(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.86(2 \mathrm{H}, \mathrm{dd}, J 7.5,2.0, \mathrm{ArH}), 6.97(1 \mathrm{H}, \mathrm{s}$, $\mathrm{ArH}), 7.06(1 \mathrm{H}, \mathrm{d}, J 7.7, \mathrm{ArH}), 7.17(2 \mathrm{H}, \mathrm{dt}, J 7.3,2.0, \mathrm{ArH})$, $7.30(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; m / z$ (EI) $197\left(\mathrm{M}^{+}, 100 \%\right), 196$ (38), 182 (20), 181 (17), 180 (20).

Reaction of N-methyl- N-phenylhydrazine 1b in benzene. Compound $\mathbf{6 a}$ was obtained by reaction $\mathbf{1 b}$ with AlCl_{3} in benzene according to the typical procedure for Table 1. Compound

6a: ${ }^{8}$ a pale yellow oil (Found: M^{+}, 183.1054. Calc. for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}$: M, 183.1048); $v_{\max }($ film $) / \mathrm{cm}^{-1} 3410,1615,1530,1490 ; \delta_{\mathrm{H}}(270$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.17\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.78(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 6.68(2 \mathrm{H}$, d, $J 9.3, \mathrm{ArH}), 7.24(1 \mathrm{H}, \mathrm{t}, J 7.6, \mathrm{ArH}), 7.38(2 \mathrm{H}, \mathrm{t}, J 7.6, \mathrm{ArH})$, 7.45 ($2 \mathrm{H}, \mathrm{d}, J 9.3, \mathrm{ArH}$), 7.54 (2H, d, $J 7.6, \mathrm{ArH}$); m/z (EI) 183 $\left(\mathrm{M}^{+}, 100 \%\right) 182(47), 152(12)$.

Reaction of $\mathbf{1 b}$ in fluorobenzene. Compounds $\mathbf{6 b}$ and $7 \mathbf{a}$ were obtained by reaction of $\mathbf{1 b}$ with AlCl_{3} in fluorobenzene according to the typical procedure for Table 1. Compound $\mathbf{6 b}$: a pale yellow oil (Found: M^{+}, 202.0947. $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{FN}$ requires M, 201.0954); $v_{\max }($ film $) / \mathrm{cm}^{-1} 3430,1620,1535,1490 ; \delta_{\mathrm{H}}(270 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 2.88\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.47(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 6.67(2 \mathrm{H}, \mathrm{d}$, $J 8.8, \mathrm{ArH}), 7.07-7.27(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.34-7.47(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$; m / z (EI) $201\left(\mathrm{M}^{+}, 100 \%\right), 200$ (57), 170 (12). Compound 7a: colourless crystals (Found: C, 77.46; H, 6.11; N, 6.89. $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{FN}$ requires $\mathrm{C}, 77.59 ; \mathrm{H}, 6.01 ; \mathrm{N}, 6.96 \%$); mp 100$100.5{ }^{\circ} \mathrm{C} ; \quad v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3450,1615,1510 ; \delta_{\mathrm{H}}(270 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 2.88\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.32(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 6.68(2 \mathrm{H}, \mathrm{d}$, $J 8.4, \mathrm{ArH}), 7.07(2 \mathrm{H}, \mathrm{t}, J 8.8, \mathrm{ArH}), 7.39(2 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{ArH})$, 7.47 ($2 \mathrm{H}, \mathrm{dd}, J 7.3,5.5, \mathrm{ArH}$); m / z (EI) $201\left(\mathrm{M}^{+}, 100 \%\right), 200$ (49), 170 (11).

Reaction of $\mathbf{1 b}$ in bromobenzene. Compounds $\mathbf{6 c}$ and $\mathbf{7 b}$ was obtained by reaction of $\mathbf{1 b}$ with AlCl_{3} in bromobenzene according to the typical procedure for Table 1. Compound $\mathbf{6 c}$: a pale yellow oil (Found: M^{+}, 261.0145. $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{BrN}$ requires M, 261.0153); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3440,1620,1530,1490,1470 ; \delta_{\mathrm{H}}(270$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.88\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.81(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 6.67(2 \mathrm{H}$, d, $J 8.6, \mathrm{ArH}), 7.06-7.19(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.27(2 \mathrm{H}, \mathrm{d}, J 8.8$, ArH), $7.29-7.33(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.64(1 \mathrm{H}, \mathrm{d}, J 8.1, \mathrm{ArH}) ; m / z$ (EI) $263\left(\mathrm{M}^{+}+2,98 \%\right), 261\left(\mathrm{M}^{+}, 100\right), 152$ (26). Compound 7b: pale yellow crystals; mp 131-133 ${ }^{\circ} \mathrm{C}$ (Found: C, 59.42 ; H, 4.62; $\mathrm{N}, 5.31 . \mathrm{C}_{13} \mathrm{H}_{12} \mathrm{BrN}$ requires C, 59.56; H, 4.61; N, 5.34\%); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3240,1615,1535,1480 ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $2.88\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.82(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 6.96(2 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{ArH})$, $7.37-7.44(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.50(2 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{ArH}) ; m / z$ (EI) 263 $\left(\mathrm{M}^{+}+2,97 \%\right), 261\left(\mathrm{M}^{+}, 100\right), 152(73)$.

Reaction of $\mathbf{1 b}$ in toluene. Compounds 6d and 7c were obtained by reaction of $\mathbf{1 b}$ with AlCl_{3} in toluene according to the typical procedure for Table 1. Compound $\mathbf{6 d}$: a pale yellow oil (Found: M^{+}, 197.1194. $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}$ requires M, 197.1204); $v_{\max }($ film $) / \mathrm{cm}^{-1} 3420,1620,1530,1490 ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $2.30\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.88\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.72(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 6.66$ ($2 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{ArH}$), 7.18 ($2 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{ArH}$), $7.20-7.30(4 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH}) ; m / z(\mathrm{EI}) 197\left(\mathrm{M}^{+}, 100 \%\right), 196$ (42), 165 (13). Compound 7c: pale yellow crystals; mp $69-70.5{ }^{\circ} \mathrm{C}$ (Found: C, 85.53; $\mathrm{H}, 7.74 ; \mathrm{N}, 7.04 . \mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}$ requires C, 85.24; H, 7.66; $\mathrm{N}, 7.10 \%$); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3410,1620,1510 ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.37$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.87\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.59(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 6.67(2 \mathrm{H}$, d, $J 8.6, \mathrm{ArH}), 7.20(2 \mathrm{H}, \mathrm{d}, J 8.1, \mathrm{ArH}), 7.40-7.47(4 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH}) ; m / z(\mathrm{EI}) 197$ ($\mathrm{M}^{+}, 100 \%$), 196 (37), 182 (9), 152 (7).

Reaction of 1a with naphthalene in the presence of AlCl_{3}. Typical procedure for Table 2

To a solution of phenylhydrazine $\mathbf{1 a}(150 \mathrm{mg}, 1.39 \mathrm{mmol})$ and naphthalene ($356 \mathrm{mg}, 2.78 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{NO}_{2}-\mathrm{HFIP}$ (1: 1) $(5 \mathrm{~mL})$ was added $\mathrm{AlCl}_{3}(925 \mathrm{mg}, 6.94 \mathrm{mmol})$ at room temperature. After the solution had been stirred for 4 h , the reaction mixture was quenched with 5% aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}(40 \mathrm{~mL})$ with cooling. The aqueous layer was extracted with ethyl acetate ($2 \times$ 20 mL) and the combined organic layers were washed with brine (25 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The crude product was chromatographed on a column of silica gel (tetrahydrofuran-hexane $1: 20$) to give 2 f ($232 \mathrm{mg}, 78 \%$); colourless crystals; mp $59^{\circ} \mathrm{C}$ (lit., ${ }^{21} 59^{\circ} \mathrm{C}$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ $3410,1610,1595,1580 ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 5.86(1 \mathrm{H}, \mathrm{br} \mathrm{s}$,

NH), 6.92 ($1 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{ArH}$), 6.99 ($2 \mathrm{H}, \mathrm{d}, J 8.0, \mathrm{ArH}$), $7.21-$ $7.29(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.34-7.59(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.83-7.89(1 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH}), 7.99-8.02(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; m / z$ (EI) $219\left(\mathrm{M}^{+}, 100 \%\right), 218$ (45), 109 (16).

Reaction of $\mathbf{1 a}$ with biphenyl. Compounds $\mathbf{2 g}$ and $\mathbf{2 h}$ were obtained by reaction of $\mathbf{1 a}$ with biphenyl (1.5 molar equiv.) according to the typical procedure for Table 2 except that the reaction mixture was refluxed in HFIP for 1.5 h . Compound $\mathbf{2 g} \mathbf{g}^{22}$ a pale yellow oil (Found: \mathbf{M}^{+}, 245.1204. Calc. for $\left.\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}: M, 245.1200\right)$; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3400,1590,1505,1490$; $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 6.68(1 \mathrm{H}, \mathrm{t} J 7.1, \mathrm{ArH}), 6.83(2 \mathrm{H}, \mathrm{d}, J 7.1$, $\mathrm{ArH}), 7.07-7.13(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.22(1 \mathrm{H}, \mathrm{br}$ s, NH), 7.26-7.32 $(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.38(2 \mathrm{H}, \mathrm{d}, J 7.3, \mathrm{ArH}), 7.52(2 \mathrm{H}, \mathrm{dd}, J 7.1$, ArH); m / z (EI) 245 ($\mathrm{M}^{+}, 100 \%$), 244 (43), 167 (14). Compound 2h: ${ }^{23}$ pale yellow crystals; mp 113.5-114.5 ${ }^{\circ} \mathrm{C}$ (Found: C, 88.18; $\mathrm{H}, 6.09$; $\mathrm{N}, 6.73$. Calc. for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}: \mathrm{C}, 88.13 ; \mathrm{H}, 6.16$; N , $5.71 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3400$, $3370,1600,1520,1500,1485$; $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 6.85(1 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{ArH}), 7.11-7.17(4 \mathrm{H}$, $\mathrm{m}, \mathrm{ArH}), 7.23-7.31(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.42(2 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{ArH}), 7.56$ ($2 \mathrm{H}, \mathrm{dd}, J 7.5,2.9, \mathrm{ArH}$), 7.61 ($2 \mathrm{H}, \mathrm{d}, J 7.1, \mathrm{ArH}$), $8.32(1 \mathrm{H}$, br s, NH); m / z (EI) 245 ($\mathrm{M}^{+}, 100 \%$), 244 (17), 168 (9).

Reaction of 1a with fluorene. Compound $\mathbf{2 i}$ was obtained by reaction of $\mathbf{1 a}$ with fluorene (1.1 molar equiv.) according to the typical procedure for Table 2 except that the reaction mixture was stirred for 48 h in the presence of AlCl_{3} (10 molar eq.). Compound 2i: colourless crystals; mp 138-139 ${ }^{\circ} \mathrm{C}$ (lit., ${ }^{14} 135-$ $136^{\circ} \mathrm{C}$) (Found: C, 88.39; H, 6.06; N, 5.19. Calc. for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}$: C, $88.68 ; \mathrm{H}, 5.88 ; \mathrm{N}, 5.44 \%) ; \lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 320\left[\right.$ lit., ${ }^{14}$ $\left.\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 316\right] ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3370,1600,1515,1490$; $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{DMSO}-d_{6}\right) 3.85\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 6.84(1 \mathrm{H}, \mathrm{t}, J 7.3$, $\mathrm{ArH}), 7.07-7.35(8 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.50(1 \mathrm{H}, \mathrm{d}, J 7.3, \mathrm{ArH}), 7.73$ ($2 \mathrm{H}, \mathrm{d}, J 8.3, \mathrm{ArH}$), 8.28 ($1 \mathrm{H}, \mathrm{s}, \mathrm{NH}$); m / z (EI) 257 ($\mathrm{M}^{+}, 100 \%$), 165 (44).

Reaction of $\mathbf{1 a}$ with dibenzofuran. Compound $\mathbf{2 j}$ was obtained by reaction of $\mathbf{1 a}$ with dibenzofuran (1.5 molar equiv.) according to the typical procedure for Table 2 except that the reaction mixture was refluxed for 20 min . Compound $\mathbf{2 j}$: colourless crystals; mp 134-135 ${ }^{\circ} \mathrm{C}$ (Found: C, 83.31; H, 5.06; N, 5.15. $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{NO}$ requires C, 83.38; H, 5.05; N, 5.40\%); $v_{\text {max }}(\mathrm{KBr}) /$ $\mathrm{cm}^{-1} 3420,1600,1510 ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ;\right.$ DMSO- $\left.d_{6}\right) 6.91(1 \mathrm{H}, \mathrm{t}$, $J 7.3, \mathrm{ArH}), 7.09(1 \mathrm{H}, \mathrm{dd}, J 8.4,2.0, \mathrm{ArH}), 7.19(2 \mathrm{H}, \mathrm{d}, J 8.1$, $\mathrm{ArH}), 7.27-7.40(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.59(1 \mathrm{H}, \mathrm{d}, J 7.5, \mathrm{ArH}), 7.93$ $(1 \mathrm{H}, \mathrm{d}, J 8.2, \mathrm{ArH}), 7.96(1 \mathrm{H}, \mathrm{d}, J 7.1, \mathrm{ArH}), 8.56(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, NH); m / z (EI) $259\left(\mathrm{M}^{+}, 100 \%\right), 230(10)$.

Reaction of $1 \mathbf{b}$ with naphthalene. Compound $\mathbf{6 e}$ was obtained by reaction of $\mathbf{1 b}$ with naphthalene (2.0 molar equiv.) according to the typical procedure for Table 2 except for the use of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-HFIP $(1: 1)$ as solvent. Compound 6 e: a pale yellow oil (Found: M^{+}, 233.1211. $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}$ requires M, 233.1204); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3430,1740,1620 ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.93$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.95(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 6.76(2 \mathrm{H}, \mathrm{d}, J 6.0, \mathrm{ArH}), 7.35$ $(2 \mathrm{H}, \mathrm{d}, J 6.0, \mathrm{ArH}), 7.37-7.53(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) 7.80(1 \mathrm{H}, \mathrm{d}, J 8.0$, $\mathrm{ArH}), 7.88(1 \mathrm{H}, \mathrm{d}, J 8.0, \mathrm{ArH}), 8.00(1 \mathrm{H}, \mathrm{d}, J 8.0, \mathrm{ArH})$; $\mathrm{m} / \mathrm{z}(\mathrm{EI}) 233\left(\mathrm{M}^{+}, 100 \%\right), 232(25), 202(18), 189$ (10).

Reaction of $\mathbf{1 b}$ with phenol. Compound $\mathbf{6 f}$ was obtained by reaction of $\mathbf{1 b}$ with phenol according to the typical procedure for Table 2 except for the use of $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\operatorname{HFIP}(1: 1)$ as solvent. Compound 6f: colourless crystals; mp 171.5-173 ${ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 78.31 ; \mathrm{H}, 6.64 ; \mathrm{N}, 6.99 . \mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}$ requires C, $78.30 ; \mathrm{H}, 6.58$; $\mathrm{N}, 7.03 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3400,3325,1615,1510 ; \delta_{\mathrm{H}}(270$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 5.63(1 \mathrm{H}, \mathrm{br}$ s, NH), $6.57(2 \mathrm{H}$, $\mathrm{d}, J 8.8, \mathrm{ArH}), 6.77(2 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{ArH}), 7.31(2 \mathrm{H}, \mathrm{d}, J 7.2$, $\mathrm{ArH}), 7.34(2 \mathrm{H}, \mathrm{d}, J 7.2, \mathrm{ArH}), 9.29(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}) ; \mathrm{m} / \mathrm{z}(\mathrm{EI}) 199$ $\left(\mathrm{M}^{+}, 100 \%\right), 198$ (33), 184 (16).

Reaction of 1b with N-(N-methylanilino)phthalimide. Compound $\mathbf{6 g}$ was obtained by reaction of $\mathbf{1 b}$ with N-(N-methylanilino)phthalimide according to the typical procedure forTable 2 except for the use $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\operatorname{HFIP}(1: 1)$ as solvent. Compound $\mathbf{6 g}$: colourless crystals; mp 250-251 ${ }^{\circ} \mathrm{C}$ (lit., ${ }^{8} 250-251^{\circ} \mathrm{C}$).

N-(Dibenzofuran-3-yl)- N -phenylacetamide (8)

To a mixture of sodium hydride ($22 \mathrm{mg}, 0.925 \mathrm{mmol}$) in benzene (5 mL) was added a solution of $\mathbf{2 j}$ ($200 \mathrm{mg}, 0.771 \mathrm{mmol}$) in DMF (5 mL) at $0{ }^{\circ} \mathrm{C}$. The mixture was warmed to room temperature and stirred for 20 min . Acetyl chloride (0.07 mL , 0.925 mmol) was then added and the solution was stirred for 20 h . The reaction mixture was quenched with 7% aq. $\mathrm{H}_{2} \mathrm{SO}_{4}$ $(10 \mathrm{~mL})$ and the aqueous layer was extracted with benzene (10 $\mathrm{mL})$. The organic layer was washed with brine (15 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The crude product was chromatographed on a column of silica gel (hexane-ethyl acetate $1: 2$) to give compound $8(154 \mathrm{mg}, 66 \%)$ as yellow crystals; $\mathrm{mp} 120^{\circ} \mathrm{C}$ (Found: C, 79.54; H, 4.94; N, 4.94. $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{NO}_{2}$ requires C, $79.72 ; \mathrm{H}, 5.02 ; \mathrm{N}, 4.56 \%)$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3060,1675,1635$, 1595,$1580 ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.12\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 7.25-7.54$ ($10 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.92 ($2 \mathrm{H}, \mathrm{d}, J 6.8, \mathrm{ArH}$); m/z (EI) 301 (M ${ }^{+}$, 40%), 259 (100).

X-Ray crystallography of $8 \dagger$

Data collection and refinement. Data were collected on a Rigaku RAXIS imaging plate area detector with graphitemonochromated Mo-K α radiation ($\lambda=0.71069 \AA$). The structures was solved by the direct method (SIR92) ${ }^{30}$ and expanded using Fourier techniques. All non-hydrogen atoms were refined anisotropically. All calculations were performed using the CrystalStructure ${ }^{31,32}$ software package.

Crystal data. Crystal dimensions $0.50 \times 0.50 \times 0.45 \mathrm{~mm}$, $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{NO}_{2}, M=301.34$, monoclinic, $P 2_{1} / \mathrm{c}$ (No. 14), $a=$ 12.9873(3), $b=6.7803(2), c=17.2761(4) \AA, \beta=96.1490(5)^{\circ}$, $V=1512.54(6) \AA^{3}, Z=4, D_{\mathrm{c}}=1.323 \mathrm{~g} \mathrm{~cm}^{-3}, \mu=0.86 \mathrm{~cm}^{-1}$, $T=296(1) \mathrm{K}, 3761$ reflections measured, refinement based on 2559 reflections. $F(000)=632.00, G O F$ on $F=1.08$, No. of parameters $=224, R=0.042[I>2.00 \sigma(I)], R_{\mathrm{w}}=0.071$, largest positive and negative difference peaks +0.27 and $-0.22 \mathrm{e}^{-3} \AA^{-3}$.
\dagger CCDC reference number 163573. See http://www.rsc.org/suppdata/p1/ bl/b103802h/for crystallographic files in .cif or other format.

References

1 M. Novak and J. Lin, J. Org. Chem., 1999, 64, 6032.
2 R. A. Abramovitch and R. Jeyaraman, in Azides and Nitrenes: Reactivity and Utility, ed. E. F. V. Scriven, Academic Press, New York, 1984, p. 297.

3 J. H. Parish and M. C. Whiting, J. Chem. Soc., 1964, 4713.
4 (a) H. Takeuchi, K. Takano and K. Koyama, J. Chem. Soc., Chem. Comтип., 1982, 1254; (b) H. Takeuchi, M. Maeda, M. Mitani and K. Koyama, J. Chem. Soc., Chem. Commun., 1987, 57.

5 G. A. Olah, P. Ramaiah, Q. Wang and G. K. S. Prakash, J. Org. Chem., 1993, 58, 6900.
6 T. Ohta, S. Miyake and K. Shudo, Tetrahedron Lett., 1985, 26, 5811.

7 H. Takeuchi and K. Koyama, J. Chem. Soc., Perkin Trans. 1, 1988, 2277; H. Takeuchi, S. Hayakawa, T. Tanahashi, A. Kobayashi, T. Adachi and D. Higuchi, J. Chem. Soc., Perkin Trans. 1, 1991, 847; R. A. Abramovitch and Q. Shi, Heterocycles, 1994, 37, 1463; R. J. Moran, C. Cramer and D. E. Falvey, J. Org. Chem., 1997, 62, 2742.

8 A. Ohwada, H. Li, T. Sakamoto and Y. Kikugawa, Heterocycles, 1997, 46, 225.
9 A. E. Arbusow and W. M. Tichwinsky, Ber. Dtsch. Chem. Ges., 1910, 43, 2295; K. Clusius and M. Hoch, Helv. Chim. Acta, 1950, 33, 2122.

10 H. Imaizumi, Y. Hashida and K. Matsui, Bull. Chem. Soc. Jpn., 1978, 51, 1507.
11 H. Takeuchi and K. Takano, J. Chem. Soc., Perkin Trans. 1, 1986, 611.

12 J. Ichikawa, S. Miyazaki, M. Fujiwara and T. Minami, J. Org. Chem., 1995, 60, 2320.
13 Y. Yost, H. R. Gutmann and C. C. Muscoplat, J. Chem. Soc. C, 1971, 2119.
14 Y. Yost and H. R. Gutmann, J. Org. Chem., 1973, 38, 165 (9 H -fluoren-1-yl)aniline: $\lambda_{\text {max }}(\mathrm{EtOH}) 266 \mathrm{~nm}, \mathrm{mp} 130-131{ }^{\circ} \mathrm{C}$; (9 H -fluoren-3-yl)aniline: $\lambda_{\text {max }}(\mathrm{EtOH}) 264,298 \mathrm{~nm}, \mathrm{mp} 145-147^{\circ} \mathrm{C}$.
15 M. V. Sargent and F. M. Dean, in Comprehensive Heterocyclic Chemistry, ed. A. R. Katritzky, Pergamon Press, Oxford, 1984, vol. 4, p. 643.
16 G. Brown, M. S. Kharash and W. R. Sprowls, J. Org. Chem., 1939, 4, 442.
17 N. L. Smith, J. Org. Chem., 1951, 16, 415.
18 H. Burton and C. S. Gibson, J. Chem. Soc., 1926, 2241
19 O. Süs, Justus Liebigs Ann. Chem., 1947, 557, 237.
20 J. P. Wolfe and S. L. Buchwald, J. Org. Chem., 1996, 61, 1133.
21 H. H. Hodgson and E. Marsden, J. Chem. Soc., 1938, 1181.
22 Y. Yost, J. Heterocycl. Chem., 1972, 9, 151.
23 J. Cymerman-Craig, W. P. Rogers and G. P. Warwick, Aust. J. Chem., 1955, 8, 252.
24 H. A. Scarborough and W. A. Waters, J. Chem. Soc., 1927, 89.
25 F. W. Bergstrom, R. E. Wright, C. Chandler and W. A. Gilkey, J. Org. Chem., 1936, 1, 170

26 T. V. Hove, Bull. Soc. Chim. Belg., 1923, 32, 52 (Chem. Abstr., 1923, 17, 3026).
27 R. Belcher, A. J. Nutten and W. I. Stephen, J. Chem. Soc., 1953, 1334.

28 M. J. S. Dewar and A. N. James, J. Chem. Soc., 1958, 4265.
29 R. J. W. L. Fèvre and E. E. Turner, J. Chem. Soc., 1926, 2041.
30 A. Altomare, M. Cascarano, C. Giacovazzo and A. Guagliardi, J. Appl. Crystallogr., 1994, 26, 343.

31 CrystalStructure, Single Crystal Structure Analysis Software, version 2.0, Molecular Structure Corporation, 9009 New Trails Drive, The Woodlands, TX, USA, 77381-5209.
32 D. J. Watkin, C. K. Prout, J. R. Carruthers and P. W. Betteridge, CRYSTALS Issue 10, Chemical Crystallography Laboratory, Oxford, UK.

